主要功能
● 动态监测根系的生长动态
● 长期监测根系的详细结构(甚至土壤颗粒)
● 可以快速获得不同深度的根系分布或土壤剖面图像
● 定点、连续观测根系在整个生长季中的动态变化
● 快速的扫描获得高清的根系图像
● 扫描软件可以设置不同图像格式(BMP、JPG、TIF和PNG)
● 对光源进行设置,满足不同土壤环境下的扫描
● ICAP命名方式兼容不同分析软件
● 分析软可以快速的进行分析根系的相关参数(根长、周长、表面积、体积、根尖数、直径等36个常用参数)
测量参数
● 根系长度、直径、截面积、投影面积、根尖数等参数
● 获取定位的不同时间季节、不同深度的根系分布或土壤剖面图像数据
应用领域
广泛应用在田间农作物根系研究、林木根系长期监测,水利工程(例如大坝)护坡草坪选种培育、古树病虫害的监测、草原的植被恢复与保护研究。
主要技术参数
● 工作环境:0℃~50℃,相对湿度0~100%RH(没有水汽凝结)
● *主机特点:柱型设计的360度旋转光电耦合主机,可对根系和土壤状态进行不变形的线性数据获取
● 可获得高至1200Dpi高清图像
● 无损线性扫描
● 光学分辨率可选100、300、600、1200Dpi
● 电源:UMPC终端供电和软件控制
● 接口:USB、WiFi或蓝牙
● 数据存贮:直接存贮到数据处理终端
● *一次获取数据尺寸:21.56cm×18.3cm
● 主机获取速率:≥30秒(依据选择不同Dpi)
● *主机探头尺寸:35.9cm长×4.6cm(直径)
● 控制盒尺寸:18 cm × 7.5 cm × 5 cm
● *主机:750g
根管
● 内径:5.0cm
● 外径:5.7cm
● 壁厚:3.2mm
● 长度:1m或2m
选购指南
主机、专业根系软件、校准管、探杆、连接电缆、使用说明书、便携式仪器箱
配置选项一
根系分析软件系统
CI-690ROOTSNAP根系分析软件系统
CI-690 RootSnap专业根系分析软件安装在触摸屏的图像数据处理终端上,可以非常方便的使用手指在根图上划过选择根系(新型方式)或使用鼠标点击选择根(传统方式),RootSnap将自动拟合根生长的轨迹,包括调整根系轨迹弧度,根系角度研究,手指控制放大缩小图像等。自动测量根的长度、直径、表面积、体积等参数,还可以一键估算图像中的总生物量。
功能
● 多点控制界面,优化触屏功能
● 根长、面积、体积、直径和分枝角的测量
● 平均根参数
● 在6秒内快速获得根的轨迹
● 改善图像品质
● 自动“Snap to Root”功能
● 综合分析关键包
● 时间序列根图分析
● 友好的用户界面
配置选项二
WinRHIZO Tron MF根系分析软件
利用WinRHIZO Tron MF可以对CI-600获取的根系图像进行分析,可得到根系根长、表面积、投影面积、体积、平均根直径和根尖数目等参数,监测根系时空生长变化。
产地:美国CID
参考文献
原始数据来源:Google Scholar
1. L. N. Böske et al., Applying minirhizotrons to observe spatiotemporal variations in rooting depth and distribution in agroecosystems to improve the performance of hydrological models. Vadose Zone Journal 24, e20382 (2025).
2. H. Zhou et al., Silicon drip fertigation improved sugar beet root and canopy growth and alleviated water deficit stress in arid areas. European Journal of Agronomy 159, 127236 (2024).
3. T. Zhang et al., Analysis of Leaf and Soil Nutrients, Microorganisms and Metabolome in the Growth Period of Idesia polycarpa Maxim. Microorganisms 12, 746 (2024).
4. J. Yuan, M. Peng, G. Tang, Y. Wang, Fine root production, mortality, and turnover in response to simulated nitrogen deposition in the subtropical Abies georgei (Orr) forest. Science of The Total Environment 923, 171404 (2024).
5. S. Uddin et al., Water use dynamics of dryland wheat grown under elevated CO2 with supplemental nitrogen. Crop and Pasture Science 75, - (2024).
6. Y. Tian et al., Improving cotton productivity and nitrogen use efficiency through late nitrogen fertilization: Evidence from a three-year field experiment in the Xinjiang. Field Crops Research 313, 109433 (2024).
7. C. Tardivo, L. Archer, L. Nunes, F. Alferez, U. Albrecht, Root System Reductions of Grafted ‘Valencia’ Orange Trees Are More Extensive Than Aboveground Reductions after Natural Infection with Candidatus Liberibacter Asiaticus. HortScience 59, 595-604 (2024).
8. Y. Song et al., Regulatory effects of non-growing season precipitation on the community structure, biomass allocation, and water-carbon utilization in a temperate desert steppe. Journal of Hydrology 634, 131112 (2024).
9. I. Rog et al., Increased belowground tree carbon allocation in a mature mixed forest in a dry versus a wet year. Global Change Biology 30, e17172 (2024).
10. M. Piecha et al., Plant roots but not hydrology control microbiome composition and methane flux in temperate fen mesocosms. Science of The Total Environment 940, 173480 (2024).
11. L. Jia et al., Contrasting depth-related fine root plastic responses to soil warming in a subtropical Chinese fir plantation. Journal of Ecology n/a, (2024).
12. W. Huh et al. (Research Square, 2024).
13. S. Huai et al., Short-Term Effects of Incorporation Depth of Straw Combined with Manure During the Fallow Season on Maize Production, Water Efficiency, and Nutrient Utilization in Rainfed Regions. Agronomy 14, 2504 (2024).
14. C. Guo et al., Adaptive strategies in architecture and allocation for the asymmetric growth of camphor tree (Cinnamomum camphora L.). Scientific Reports 14, 22604 (2024).
15. R. S. de Oliveira et al., Survey and genomic characterization of Serratia marcescens on endophytism, biofilm, and phosphorus solubilization in rice plants. Environmental Science and Pollution Research 31, 65834-65848 (2024).
16. N. B. Costa et al., Beneficial bacteria mitigate combined water and phosphorus deficit effects on upland rice. Plant and Soil, (2024).
17. W. Bieluczyk et al., Fine root production and decomposition of integrated plants under intensified farming systems in Brazil. Rhizosphere 31, 100930 (2024).
18. T. Banet, A. G. Smith, R. McGrail, D. H. McNear Jr., H. Poffenbarger, Toward improved image-based root phenotyping: Handling temporal and cross-site domain shifts in crop root segmentation models. The Plant Phenome Journal 7, e20094 (2024).
19. G. Azam, K. Wickramarachchi, C. Scanlan, Y. Chen, Deep and continuous root development in ameliorated soil improves water and nutrient uptakes and wheat yield in water-limited conditions. Plant and Soil, (2024).
20. A. A. Atta, K. T. Morgan, S. A. Hamido, D. M. Kadyampakeni, Irrigation optimization enhances water management and tree performance in commercial citrus groves on sandy soil. Irrigation Science, (2024).
21. A. Atta, K. Morgan, S. Hamido, D. Kadyampakeni, Irrigation optimization enhances water management and tree performance in commercial citrus groves on sandy soil. (2024).
22. J. Arnhold et al., Minirhizotron measurements can supplement deep soil coring to evaluate root growth of winter wheat when certain pitfalls are avoided. Plant Methods 20, 183 (2024).